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Stability of spiralling solitary waves in Hamiltonian systems
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We present a rigorous criterion for stability of spiralling solitary structures in Hamiltonian systems incor-
porating the angular momentum integral and demonstrate its applicability to the spiralling of two mutually
incoherent optical beams propagating in a photorefractive material.
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The richness of spatiotemporal dynamics of light in no
linear media has attracted much attention over the last
cade. One of the many recent areas of interest is spirallin
self-localized beams of light@1#. Existence of spiralling
structures in conservative nonlinear models was repo
over a decade ago in the context of generalized Kle
Gordon @2# and nonlinear Schro¨dinger @3,4# equations. Re-
cently there has been renewed interest, following a serie
experiments demonstrating spiralling of a pair of mutua
incoherent light beams propagating in photorefractive ma
rials @5–8#, and in concomitant numerical modeling@6–9#
broadly supporting these experiments. The basic idea is
the attractive forces between two optical beams can be c
pensated by a centrifugal force due to nonzero angular
mentum of the beams@4,5#. Later developments have als
shown seemingly stable spiralling structures resulting fr
azimuthal instability of a vortex beam within the potent
created by a strong soliton field incoherent with the vor
@8,9#. These structures have been termedpropeller solitons
@8# or rotating dipole-mode vector solitons@9#.

On the analytical side two main approaches have b
pursued to describe spiralling. One is a variational appro
@10,11#, which is known to produce good approximations f
the shape of solitary solutions. Variational methods, ho
ever, cannot reliably predict the spectral properties of s
tons@12#. Substituting approximate solutions into the Ham
tonian and deriving an expression for the effecti
interaction potential@13,14# can correctly predict stability
with respect to changes of the soliton separations, but ca
examine stability with respect to the phase degrees of f
dom, because a self-consistent potential function canno
defined if the latter are fully accounted for.

A more rigorous approach is based on asymptotic the
of weakly interacting solitary waves@2,7#. It yields all rel-
evant eigenvalues and therefore can be expected to give
predictions for stability. However, both linearization near t
spiralling solution of the reduced ordinary differential equ
tions for the soliton parameters and finding this solution
analytical form are often very difficult problems on the
own. Comparison of numerical modeling of the full parti
and reduced ordinary differential equations is often the o
sensible option@7#. Obviously neither of the above method
is applicable to describe stability of spiralling structur
which cannot be approximated by a set of weakly overl
ping individual solitons.
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Thus obtaining a rigorous and general analytical criter
for the stability of spiralling solutions in Hamiltonian mode
evidently is an open and important problem, which we a
proach and solve in this work. Results presented below
rather general, but we derive them in the context of t
coupled nonlinear Schro¨dinger ~NLS! equations with satu-
rable nonlinearity, which have well established spiralling s
lutions @7–9#, and are believed to provide a reasonable
proximation to the nonlinear interaction of incoherent bea
in photorefractives@5,7,8#

~ i ]z1]x
21]y

2!E1,22 f ~ I !E1,250, ~1!

where f (I )51/(11I ), I 5uE1u21uE2u2, and z and x,y are,
respectively, dimensionless longitudinal and transverse c
dinates. We consider solutions which spiral with const
angular frequencyv in propagation alongz. As in recent
publications on Bose-Einstein condensation in rotating tr
~see, e.g., Ref.@15#!, we change to a rotating coordinate sy
tem: E1,2(x,y,z)5F1,2(X,Y,z)eik1,2z with X5x cos(vz)
1ysin(vz), Y52x sin(vz)1ycos(vz). The wave-number
correctionsk1,2, together withv, parametrize the solution
of interest. Now Eqs.~1! read as

@ i ]z1vL̂1]X
21]Y

2 #F1,22@k1,21 f ~ I !#F1,250, ~2!

where L̂52 i (X]Y2Y]X)5 i ]u is the z component of the
angular momentum operator, familiar in quantum mechan
andu5arg(X1 iY). The convenience of the form~2! is that
beams spiralling with frequencyv in the (x,y) frame are
stationary in the (X,Y) frame and that parameterization byv
andk1,2 is now explicit.

By analogy with stability thresholds known for other mu
tiparameter solitary waves@16#, which in their turn stem
from the seminal Vakhitov-Kolokolov criterion@17#, we can
already guess the expression for the stability threshold
such a solution (F1,2 localized inX,Y). This condition is
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whereP1,25*dXdYuF1,2u2 are the independently conserve
power flows of the two interacting fields andL
5 iWz•**dXdYrW3 jW5(n51,2**rdrdu Im(Fn* ]uFn) is the or-

bital angular momentum integral. HererW5 iWXX1 iWYY, jW

5(n51,2@Fn* ( iWX]X1 iWY]Y)Fn2c.c.#/(2i ). iWX , iWY , iWz are the
unit vectors alongX, Y, and z axes. The conservation law
]zL5]zP1,250 follow directly from the Hamiltonian nature
of our model combined with invariance of Eqs.~2! with re-
spect to rotations in the (X,Y) plane and to the two phas
shifts (F1 ,F2)→(F1eif1,F2eif2).

To formally derive Eq.~3! and verify its applicability to
the stability of spiralling solutions of Eqs.~1!, we adopt the
following approach: first, we prove, both analytically an
numerically, that stationary,v50, dipole-mode soliton solu
tions of Eqs.~2! can be smoothly continued alongv; second,
we derive an expression for the eigenvalues governing
bility of this solution and numerically verify change of st
bility at D050; third, we discuss applicability and genera
zation of our results for other cases and models.

It has been previously established that stationary dip
mode solitons and rotating dipoles@8,9# bifurcate from the
scalar fundamental soliton solution,F15A0(r 5AX21Y2),
F250, for certain values of (k1 , k2). Linearization of Eqs.
~2! near this soliton leads to a factorizable eigenvalue pr
lem. The modes of the excitations of theF2 component are
related to the eigenstates of the operator]X

21]Y
22k221/(1

1A0
2), which has eigenfunctions of the formf m(r )e6 imu,

m50,1,2, . . . . Scanning the (k1 ,k2) plane, one can show
that the scalar soliton always remains stable, but that th
are special lines, where eigenvalues corresponding toF2
eigenstates with a particular value ofm cross zero. That cor
responding tom51 marks the boundary line, (k1c ,k2c),
where dipole-mode solitons bifurcate from the scalar solit
see Fig. 1. Thus the weakF2 component of the emergin

FIG. 1. Diagram showing region of existence and stability of
spiralling solutions in the (k1 ,k2) plane, for different values ofv.
InterchangingE1 andE2, one can plot a symmetric diagram in th
region k2.k1. Inset showsD050 lines corresponding tov50,
0.02, 0.03, and 0.04, which are plotted from left to right, resp
tively. D050 lines marked by arrows correspond tov50.
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two-component solutions can be seen as a field guided by
strongF1 component. To obtain expressions for the bifurc
ing solutions we use asymptotic expansionsF15A0(r )
1O(e2), F25eB1(z,r ,u)1O(e3), where e!1 measures
distance from the bifurcation line. Assumingv;e2 one can
show that eB15 f (r )@a1(z)eiu1a2(z)e2 iu#, where f (r )
vanishes at zero and infinity anda6 obey

i ]za65a6~aua6u21bua7u2!6va6 . ~4!

The self- and cross-phase modulation constantsa,b can be
found only numerically. The term inv originates fromL̂ in
Eqs.~2!. This system represents the normal form describ
breaking of rotational symmetry in Hamiltonian models a
is generic in the vicinity of a point where a rotationally no
invariant solution bifurcates from a rotationally invariant o
@18#.

The solution of interest to Eqs.~4! is

a65ã6ei k̃2z, uã6u25
k̃2~b2a!7v~a1b!

a22b2
, ~5!

where k̃25(k22k2c);e2. This solution exists fork̃2.0
and in thev interval

k̃2~b2a!

b1a
,v,

k̃2~a2b!

b1a
, ~6!

where 0,(a2b)/(a1b),1. In the original frame, forv
50 it describes stationary, and, forvÞ0, rotating or spiral-
ling dipoles. At the boundaries of its existence~6! this solu-
tion is a vortex inF2, with eithera1 or a2 equal to zero. For
more details on localized vortex solutions in multicompone
NLS models see, e.g., Refs.@9,19#.

Thus we have demonstrated analytically that a spirall
solution is parametrized by its frequencyv and, therefore,
derivatives]vP1,2, ]vL indeed exist. Note that equation
analogous to Eqs.~4! have been also derived in Ref.@8#, but
this link between the stationary and rotating dipoles follo
ing from them was not discussed. Several other new
important consequences of these equations are presente
low.

To find spiralling solutions arbitrarily far from the bifur
cation boundary we have solved Eqs.~2! with ]z50 using a
numerical technique based on a Newton method. We
tained such solutions throughout the region bounded by
lines k1,25k1c,2c andk15k2 in the (k1 ,k2) plane, see Fig.
1. By symmetry, corresponding solutions withE1 and E2
interchanged exist in the mirror-image domaink2.k1.

For k1,2 values far enough fromk1c,2c , the F1 field de-
velops two strong intensity peaks overlapping with those
the F2 dipole. In this region a spiralling structure can b
interpreted as a dynamical bound state of two weakly ov
lapping single-hump vector solitons@7#. Thus our results in-
dicate that the spiralling solitons found in Ref.@7# and the
rotating dipole ~or propeller! solitons @8,9# belong to the
same soliton family.
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Having established existence of stationary solutions
Eqs. ~2! parametrized byv and k1,2 we now consider their
stability. Equations~4! predict that both spiralling dipole
and vortex solutions are stable. However, these equation
not capture possible instabilities due to angular harmon
with umuÞ1 and are only valid close to (k1c ,k2c). The
straightforward method to study stability of the spirallin
solution F1,25F1s,2s found from Eqs. ~2! is to set F1,2
5F1s,2s(X,Y)1@u1,2(X,Y)elz1 iw1,2(X,Y)elz1c.c.# and
linearize Eqs.~2! assuming thatu1,2,w1,2 are small. The next
step is to find the spectrum of the resulting eigenvalue pr
lem ĴuW 5luW , whereuW 5(u1 ,u2 ,w1 ,w2)T. The explicit form
of of the operatorĴ is too cumbersome to be presented he
and reliable numerical analysis of its spectrum is a form
dable computational problem in its own right. Therefore,
will rely in what follows on a combination of analytical tech
niques and direct numerical modeling of Eqs.~1!.

We have undertaken extensive numerical modeling
Eqs. ~1!, initialized with our computed spiralling solution
with small added noise. For various values ofk1,2 andv, we
observe unstable behavior in the vicinity of the linek1
5k2. The unstable dynamics was monitored by plotting
z evolution of the powersP1,2 and angular momentumL, see
Fig. 2. Any instability resulting in the radiation of energ
leads to the decay of these quantities, because we use
sorbing boundary conditions on the perimeter of the com
tational window, where the solitonic field is negligible. Fi
ure 2 shows several such plots fork2520.7 and severa
values ofk1 . P1,2, L are conserved fork1.;20.65, but
closer to the linek15k2, their evolution indicates sheddin
of radiation with subsequent stabilization at new station
levels. Corresponding volume plots are shown in Fig. 3.

We interpret this as an intrinsic instability of the spirallin
solutions. Becausek1,2 and v parameterize a particular so
lution, not the system as a whole, they can change during
evolution of an unstable solution. Therefore, as Figs. 2 an
illustrate, unstable spiralling solutions with given values
P1,2 andL can evolve into stable spiralling solutions carryin
different powers and angular momentum, plus some nons
tonic radiation.

By numerically computing the properties of whole fam
lies of spiralling solutions we have been able to evaluate
determinantD0 given by Eq.~3!. We find that it does indeed

FIG. 2. z evolution of P2 and L. k2520.7. Solid, dotted,
dashed, and dash-dotted lines, respectively, denote,k1520.63,
20.670, 20.675, and20.680.
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change sign at the onset of instability.D0 is positive in the
region where numerical modeling of Eqs.~1! indicates stable
spiralling, and negative in the region where unstable dyna
ics is observed. We now prove that change of sign ofD0 is a
sufficient condition for the existence of instability. To deriv
this criterion formally we solve the eigenvalue problemĴuW

5luW , assuming thatulu is a small parameter, and takinguW as
a superposition of the neutral~or Goldstone! eigenmodes of
Ĵ @16#. These neutral modes can be found by apply
infinitesimal symmetry transformations to the solito
solution. In our case the two phase symmetries gene
the neutral modesuW f1

5(2Im F1s,0,ReF1s,0)T, uW f2
5(0,

2Im F2s,0,ReF2s,0)T, while the rotation symmetry in the
(X,Y) plane generates uW u5]u(Re F1s ,ReF2s ,
Im F1s ,Im F2s)

T. Thus we set uW 5uW cr5C1uW f1
1C2uW f2

1C3uW u1O(ulu), where C1,2,35O(1) are some constant
which can be found at higher order. Developing perturbat
theory up to the fourth order inulu, ~analogous to the theory
described in Ref.@16#! we have found that eigenvalues co
responding touW cr are given bylcr

2 52D0 /D11O(ulcru4).
The expression forD1 is quite cumbersome, but can be d
duced from the corresponding two-parameter formulas gi
in Ref. @16#. ProvidedD1 is finite, our expression forlcr

2

formally demonstrates that spiralling solutions always ha
at least one unstable mode in any neighborhood ofD050.
Direct modeling of Eqs.~1! indicates thatD050 marks the
first instability threshold met as spiralling solutions a
tracked in parameter space~see Fig. 1! from the bifurcation
line (k1c , k2c), where they emerge towards the linek1
5k2.

Our expression~3! for D0 is in fact a new generalized
form of the Vakhitov-Kolokolov criterion@16,17#, incorpo-
rating the angular momentum integral. This is a direct co
sequence of the need to include the rotational modeuW u in the
derivation ofD0. The relevance of this neutral mode in o
case can be seen by noting that Eqs.~4! are invariant with

FIG. 3. Volume plots showing instability induced dynamics
uE1u ~top! and uE2u ~bottom! for initial condition corresponding to
k1520.68, k2520.7, v50.04. One can observe an instabili
induced increase of the frequency tov.0.065. Surfaces plotted
correspond touE1,2u50.5.
2-3
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respect to the two phase shifts (a1 ,a2)
→(a1eif21 ic,a2eif22 ic). The phasef2 is the same as pre
viously introduced for Eqs.~2!, but the physical meaning o
c is an angle of rotation in the (X,Y) plane. The solution
ã650, corresponding to the scalar soliton, is itself rotatio
ally invariant. For the pure vortex solitons any change oc
can be mimicked by a shift off2. Thus for these two classe
of solutions rotational symmetry is not broken and so
corresponding neutral mode is absent from their spectra.
orous theory explaining absence of neutral modes in the s
ations analogous to those considered here was recently
lished in Ref.@20#. This absence can be easily verified
direct linearization of Eqs.~4!. The dipole solution with both
ã6Þ0, however, breaks rotational symmetry and theref
acquires an extra neutral eigenmode, which in turn imp
an additional dimension in the determinantD0. For a general
discussion of symmetry breaking in the context of solit
theory, see, e.g., Ref.@21#.

Note thatk15k2 is a critical line, where the equations fo
F1,2 become identical and neither of the components can
n.
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identified as guiding or guided@22#. Though detailed studies
of the vicinity of the linek15k2 are left for the future, we
expect that solutions discussed here are in some way lin
with another class of spiralling structures recently found
the single NLS equation with saturable nonlinearity@13#,
which reduces to Eqs.~1! for k15k2. Though sufficiency of
the conditionD0 /D1,0 for these solutions to be unstable
clear, its necessity is a much more subtle question, wh
requires separate detailed investigation.

In conclusion, we have presented and proved a gene
ized form of the Vakhitov-Kolokolov criterion which incor
porates the angular momentum integral and is generally
plicable in Hamiltonian systems exhibiting breaking of t
rotational symmetry. We have demonstrated that this cr
rion correctly predicts instability thresholds for spiralling s
lutions of the saturable vector Kerr model, which describ
recent experimental observations in photorefractive me
@23#.

This work was supported by the UK EPSRC Grant N
GR/N19830.
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