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Stability of spiralling solitary waves in Hamiltonian systems
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We present a rigorous criterion for stability of spiralling solitary structures in Hamiltonian systems incor-
porating the angular momentum integral and demonstrate its applicability to the spiralling of two mutually
incoherent optical beams propagating in a photorefractive material.
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The richness of spatiotemporal dynamics of light in non- Thus obtaining a rigorous and general analytical criterion
linear media has attracted much attention over the last dder the stability of spiralling solutions in Hamiltonian models
cade. One of the many recent areas of interest is spiralling agfvidently is an open and important problem, which we ap-
self-localized beams of lighf1]. Existence of spiralling Proach and solve in this work. Results presented below are
structures in conservative nonlinear models was reportetgther general, but we derive them in the context of two
over a decade ago in the context of generalized Kleincoupled nonlinear Schdinger (NLS) equations with satu-
Gordon[2] and nonlinear Schitbnger[3,4] equations. Re- rable nonlinearity, which have well established spiralling so-

cently there has been renewed interest, following a series d¢tions [7—9], and are believed to provide a reasonable ap-
experiments demonstrating spiralling of a pair of mutua”yprommanon to the nonlinear interaction of incoherent beams

incoherent light beams propagating in photorefractive matell! Photorefractivess,7.§|
rials [5—8], and in concomitant numerical modelif§—9]

broadly supporting these experiments. The basic idea is that
D e ea S b2 linre (1) (541, 144 €5, anz anay are
Enentum of%he beambﬁ? 5. Later developments hase also respectively, dimensionless longitudinal and transverse coor-

rnginates. We consider solutions which spiral with constant
) . 7 S . angular frequencyw in propagation along. As in recent
azimuthal instability of a vortex beam within the potential , jications on Bose-Einstein condensation in rotating traps
created by a strong soliton field incoherent with the vortex(See e.g., Ref15]), we change to a rotating coordinate sys-
[8,9]. These structures have been ternmedpeller solitons  {om- E,AXY,2)=F1 AX,Y,2)e1Z with X=x cosw?)
[8] or rotating d|p_ole—m.ode vector §0I|tor[§]. +ysin(wi), V= —xsih(wz)+ycos@z). The wave-number
On the analytical side two main approaches have beeBorrectionsk, ,, together withw, parametrize the solutions
pursued to describe spiralling. One is a variational approachf interest. Now Eqs(1) read as

[10,11], which is known to produce good approximations for

the shape of solitary solutions. Variational methods, how- [0, ol + 3%+ 2 F 1~ [k1o+ F()]F1=0, (2
ever, cannot reliably predict the spectral properties of soli- ' ' ’

tons[12]. Substituting approximate solutions into the Hamil- where [ = —i(Xay—Ydy)=id, is the z component of the
f[onlan _and derlylng an expression for t.he eﬁ??t'veangular momentum operator, familiar in quantum mechanics,
interaction potentia[13,14] can correctly predict stability and 6=arg(X+iY). The convenience of the for(2) is that
with respect to changes of the soliton separations, but canngl;ms spiralling with frequency in the (x,y) frame are

examine stability with respect to the phase degrees of frees‘tationary in the X,Y) frame and that parameterization by
dom, because a self-consistent potential function cannot bg K1 518 now explicit.

defined if the latter are fully accounted for. _ By analogy with stability thresholds known for other mul-
A more rigorous approach is based on asymptotic theoryiarameter solitary wavefL6], which in their turn stem

of weakly interacting solitary wavei2,7]. It yields all rel- o the seminal Vakhitov-Kolokolov criteriofL.7], we can
evant eigenvalues and therefore can be expected to give goggteady guess the expression for the stability threshold for
predictions for stability. However, both linearization near theg ., 4 solution , , localized inX,Y). This condition is

spiralling solution of the reduced ordinary differential equa-

(19,4 05+ d5)Eq ,—F(1)Eq =0, 1)

tions for the soliton parameters and finding this solution in
. e . P, 9Py dPq
analytical form are often very difficult problems on their — — —=
own. Comparison of numerical modeling of the full partial dky Kz dw
and reduced ordinary differential equations is often the only P, P, P,
sensible optiorf7]. Obviously neither of the above methods Do=def —— —— ——~| =0, )
; . . - S 1 K2 @
is applicable to describe stability of spiralling structures
which cannot be approximated by a set of weakly overlap- oL oL L
ping individual solitons. dk, Jdky; Jdw
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0.0 two-component solutions can be seen as a field guided by the
strongF; component. To obtain expressions for the bifurcat-
_ozt ing solutions we use asymptotic expansiofRg=Ag(r)
' +0(€?), F,=€B(zr,0)+0(e’), where e<1 measures
distance from the bifurcation line. Assuming~ €? one can
_o4l show that eB,=f(r)[a,(z)e'’+a_(z)e '’], where f(r)
e vanishes at zero and infinity ared. obey
-0t id,a.=a-(ala.|’+Blaz|’) *wa. . (4)
—o0slk The self- and cross-phase modulation constanj3 can be
' found only numerically. The term im originates fromL in
Egs.(2). This system represents the normal form describing
-l breaking of rotational symmetry in Hamiltonian models and
-1.0 -08 -06 -04 -02 0.0 is generic in the vicinity of a point where a rotationally non-
K invariant solution bifurcates from a rotationally invariant one

FIG. 1. Diagram showing region of existence and stability of the
spiralling solutions in the £, ,«») plane, for different values ab.
Interchangingg; andE,, one can plot a symmetric diagram in the ~ -
region k,> k4. Inset showsD,=0 lines corresponding t@=0, a. -2 ei;ZZ |'é |2= Ka(B—a)+ w(atp)
0.02, 0.03, and 0.04, which are plotted from left to right, respec- =2 ' = a?— B2
tively. Do=0 lines marked by arrows correspondde=0.

The solution of interest to Eq$4) is

)

. . where k,= (kp— kyc) ~ €2. This solution exists fork,>0
whereP; ;= [dXdY|F; ;| are the independently conserved gnqd in thew interval

power flows of the two interacting fields and

=i, [JdXdYTX]=2_;,f frdrd @ Im(F% d,F ) is the or- Tl f—at)

bital angular momentum integral. Heme=iyX+iyY, |

=31 dFE (Ixdx+iydy)Fn—c.cll(2i). ix,iy,i, are the

unit vectors alongX, Y, andz axes. The conservation laws yhere 0<(a—B)/(a+B)<1. In the original frame, fow

d,L=3,P1,=0 follow directly from the Hamiltonian nature _ g it describes stationary, and, far# 0, rotating or spiral-

of our model combined with invariance of Eq@) with re-  jing dipoles. At the boundaries of its existen@ this solu-

spect to rotations in theX,Y) plane and to the two phase tion is a vortex inF,, with eithera, ora_ equal to zero. For

shifts (F1,Fp)— (F1e'?,Fpe'??). o more details on localized vortex solutions in multicomponent
To formally derive Eq.(3) and verify its applicability to  NLS models see, e.g., Ref@,19.

the stability of spiralling solutions of Eq¢l), we adopt the  Thys we have demonstrated analytically that a spiralling

following approach: first, we prove, both analytically and sojytion is parametrized by its frequenay and, therefore,

numerically, that stationary, =0, dipole-mode soliton solu-  gerivativesd, P, ,, d,L indeed exist. Note that equations

tions of Egs(2) can be smoothly continued aloag second,  analogous to Eqg4) have been also derived in R8], but

we derive an expression for the eigenvalues governing stapjs |ink between the stationary and rotating dipoles follow-

bility of this solution and numerically verify change of sta- jng from them was not discussed. Several other new and

bility at Do=0; third, we discuss applicability and generali- jmportant consequences of these equations are presented be-
zation of our results for other cases and models. low.

It has been previously established that stationary dipole- Tq find spiralling solutions arbitrarily far from the bifur-
mode solitons and rotating dipol¢8,9] bifurcate from the  cation boundary we have solved E¢®) with 9,=0 using a
scalar fundamental soliton solutioRy=Ao(r =vVX“+Y?),  numerical technique based on a Newton method. We ob-
F,=0, for certain values ofK;, ). Linearization of EQs. tained such solutions throughout the region bounded by the
(2) near this soliton leads to a factorizable eigenvalue probtipnes K12=K1ica @aNd k1=K, in the (k1,x,) plane, see Fig.
lem. The modes of the excitations of tﬁ@ component are 1. By symmetry, Corresponding solutions Wlﬂl and E2
related to the eigenstates of the operatpt 95— x,—1/(1  interchanged exist in the mirror-image domaig> «;.
+A2), which has eigenfunctions of the forfig,(r)e*'™?, For «, , values far enough fromx,. ., the F, field de-
m=0,1,2 ... . Scanning the £;,x,) plane, one can show velops two strong intensity peaks overlapping with those of
that the scalar soliton always remains stable, but that therge F, dipole. In this region a spiralling structure can be
are special lines, where eigenvalues corresponding o interpreted as a dynamical bound state of two weakly over-
eigenstates with a particular valuemfcross zero. That cor- lapping single-hump vector solitohg]. Thus our results in-
responding tom=1 marks the boundary linex{.,x»c), dicate that the spiralling solitons found in R¢7] and the
where dipole-mode solitons bifurcate from the scalar solitonrotating dipole (or propellej solitons [8,9] belong to the
see Fig. 1. Thus the wedk, component of the emerging same soliton family.

Kola—p)
<
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. . i i . FIG. 3. Volume plots showing instability induced dynamics of
Having established existence of stationary solutions OTE1| (top) and |E,| (bottom for initial condition corresponding to

Egs. (2) parametrized by» and «; , we now consider their .. — 0.8, x,=—0.7, ¥=0.04. One can observe an instability

stability. Equations(4) predict that both spiralling dipoles induced increase of the frequency éo=0.065. Surfaces plotted
and vortex solutions are stable. However, these equations d@rrespond tdE; 4 =0.5.

not capture possible instabilities due to angular harmonics

with [m[#1 and are only valid close toxg.,x»;). The change sign at the onset of instabiliy, is positive in the
straightforward method to study stability of the spiralling region where numerical modeling of Ed4) indicates stable
solution F; ,=F;5,s found from Egs.(2) is to setF;, spiralling, and negative in the region where unstable dynam-
=F1525(X,Y) +[ul,2(X,Y)e“+ iwlyz(X,Y)e“Jr c.c] and icsis observed. We now prove that change of sighgis a
linearize Eqs(2) assuming thatl; ,,w; , are small. The next sufficient condition for the existence of instability. To derive

step is to find the spectrum of the resulting eigenvalue probyis criterion formally we solve the eigenvalue probIéTﬁ

~ _>_ - _)_ T . . - ) . i
lem Ju=\u, whereu=(uy,uz,wy,W,) . The explicitform - assuming thai\| is a small parameter, and takings
of of the operator7 is too cumbersome to be presented herea superposition of the neutrér Goldstong eigenmodes of
and reliable numerical analysis of its spectrum is a formi-7 [16]. These neutral modes can be found by applying
dable computational problem in its own right. Therefore, wejnfinjtesimal symmetry transformations to the soliton
will rely in what follows on a combination of analytical tech- so|ytion. In our case the two phase symmetries generate

niques and direct numerical modeling of E¢s). - T oo
We have undertaken extensive numerical modeling the neutral modesi,, =(—Im Fy5,0,ReF;5,0)7, Uy, = (0,

Egs. (1), initialized with our computed spiralling solutions —'™M F25,0,ReF5,0)", while the rotation symmetry in the
with small added noise. For various valuesgf, andw, we  (X.Y) plane  generates u,=d4(ReFs,ReFys,
observe unstable behavior in the vicinity of the lirg  Im F,,Im F,)". Thus we setﬁ=ﬁcr=Clﬁ¢l+Czﬁ¢2
= k,. The unstable dynamics was monitored by plotting the
z evolution of the power®; , and angular momentuin, see
Fig. 2. Any instability resulting in the radiation of energy
leads to the decay of these quantities, because we used
sorbing boundary conditions on the perimeter of the compu- i - . 5 4
tational window, where the solitonic field is negligible. Fig- fesponding taue, are given byag,=—Dgo/Dy+O(|\¢|%).

ure 2 shows several such plots feg=—0.7 and several The expression fob, is quite cumbersome, but can be de-
values ofk;. Py,, L are conserved fok,>~ —0.65, but duced from the corresponding two-parameter formulas given

closer to the linec, = ky, their evolution indicates shedding i Ref. [16]. ProvidedD; is finite, our expression fokZ,
of radiation with subsequent stabilization at new stationanformally demonstrates that spiralling solutions always have
levels. Corresponding volume plots are shown in Fig. 3.  at least one unstable mode in any neighborhoo®g# 0.

We interpret this as an intrinsic instability of the spiralling Direct modeling of Egs(1) indicates thaD,=0 marks the
solutions. Because; , and » parameterize a particular so- first instability threshold met as spiralling solutions are
lution, not the system as a whole, they can change during thiéacked in parameter spacsee Fig. 1 from the bifurcation
evolution of an unstable solution. Therefore, as Figs. 2 and 8n€ (kic, x2c), where they emerge towards the ling
illustrate, unstable spiralling solutions with given values of = K2-

P, ,andL can evolve into stable spiralling solutions carrying Our expression(3) for Dy is in fact a new generalized
different powers and angular momentum, plus some nonsolform of the Vakhitov-Kolokolov criterior{16,17, incorpo-
tonic radiation. rating the angular momentum integral. This is a direct con-

By numerically computing the properties of whole fami- sequence of the need to include the rotational magie the
lies of spiralling solutions we have been able to evaluate théerivation ofD,. The relevance of this neutral mode in our
determinanD given by Eq.(3). We find that it does indeed case can be seen by noting that E@s. are invariant with

+C3uy+O(|N]), whereC,,5=0(1) are some constants
which can be found at higher order. Developing perturbation
theory up to the fourth order in\|, (analogous to the theory
escribed in Ref[16]) we have found that eigenvalues cor-
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respect to the two phase shifts a(,a_) identified as guiding or guidel®2]. Though detailed studies
—(a,e'?"¥ a_el%271") The phasep, is the same as pre- of the vicinity of the linex;= «, are left for the future, we
viously introduced for Eqs(2), but the physical meaning of expect that solutions discussed here are in some way linked
¢ is an angle of rotation in theX(Y) plane. The solution with another class of spiralling structures recently found in
2. =0, corresponding to the scalar soliton, is itself rotation-the single NLS equation with saturable nonlineariyg],

ally invariant. For the pure vortex solitons any changepof Which reduces to Eqgl) for «;=«,. Though sufficiency of
can be mimicked by a shift ap,. Thus for these two classes the conditionD,/D; <0 for these solutions to be unstable is
of solutions rotational symmetry is not broken and so theclear, its necessity is a much more subtle question, which
corresponding neutral mode is absent from their spectra. Rigequires separate detailed investigation.

orous theory explaining absence of neutral modes in the situ- [N conclusion, we have presented and proved a general-
ations analogous to those considered here was recently pued form of the Vakhitov-Kolokolov criterion which incor-
lished in Ref.[20]. This absence can be easily verified by Porates the angular momentum integral and is generally ap-

direct linearization of Eqg4). The dipole solution with both ~ Plicable in Hamiltonian systems exhibiting breaking of the

a.#0, however, breaks rotational symmetry and thereforé.o'[""tionaI symmetry. We have demonstrated that this crite-

acquires an extra neutral eigenmode, which in turn implie lon correctly predicts instability thresholds for §piral|ing S0
an additional dimension in the determi,nm For a general utions of the saturable vector Kerr model, which describes

discussion of symmetry breaking in the context of Solitonrecent experimental observations in photorefractive media
theory, see, e.g., Ref21]. [23].

Note thatx, = «, is a critical line, where the equations for ~ This work was supported by the UK EPSRC Grant No.
F 1, become identical and neither of the components can b&R/N19830.
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